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4. Concluding remarks 

The nature of the thermal diffuse scattering in barium 
fluoride and calcium fluoride, as observed in time-of- 
flight neutron diffraction, was described earlier by 
Carlile & Willis (1989). These observations were 
restricted to the scattering rrgime in which the 
neutron velocity v, was within the range 

cs> v , >  cs cos 0, 

where cs is the velocity of sound in the crystal. For 
this rrgime there are two TDS peaks for a given offset 
angle from the Bragg position: one peak corresponds 
to phonon emisson and the other to phonon 
absorption. 

In the present paper the measurements on barium 
fluoride have been extended to neutron velocities in 
the range 

vn < Cs COS 0. 

Theory indicates that for this rrgime (Willis, 1986) 
there is only one TDS peak for a given offset angle 
(0 - 0s). The peak is due to phonon emisson for 0 < 0s 
and to phonon absorption for 0 > 0s. Our measure- 
ments have confirmed the existence of this single peak 
and we have derived from it an estimate of the velocity 
of sound in BaF2. This estimate is in good agreement 
with the independent value derived earlier from 
observations in the first velocity rrgime. 

line O N  at an angle I7-/2-0 to OB is the 'elastic 
line', i.e. the locus of the endpoints of scattered 
neutron wave vectors that undergo no change of 
energy on being scattered through 20. The centre of 
the ellipsoid scattering surface is represented by C; 
P is the nearest reciprocal-lattice point. P is at the 
focus of the ellipsoid and the elastic line O N  
coincides with the directrix. 

From elementary geometry we have 

CP = ae, 

C N  = ale, 

P N  = a ( 1 / e - e ) =  2ks(sin O)AO, 

where ks is the wave vector for Bragg scattering, 2a 
is the length of the major axis of the ellipsoid and e 
is its eccentricity. Also, OD in Fig. 5 has the length 
ks, OB has length ko, so 

DB = k s -  ko = -Ako.  

For the SXD, the path length of the scattered beam 
is much shorter than for the direct beam, so we can 
write 

At/ t s  = -Ako /  ks. 

Recalling that 1/e =/3 cos 0 (Willis, 1986), we obtain 
finally 

A t / A 2 0  = ½tB(tan 0)/(f12 cos 2 0 - 1). 

APPENDIX 

To calculate the difference in time of flight between 
the TDS peak and the Bragg peak, we refer to the 
diagram in Fig. 5. Here O is the origin of reciprocal 
space, OB is the wave vector ko of the incident beam 
and BC the wave vector of the scattered beam. The 
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Abstract 

For the purpose of calculating the reflectivity of per- 
fect crystals in the Bragg case, taking into account 
both normal and Borrmann absorption, it is suggested 
that its original form is used expressed in terms of 
complex variables. Care is required regarding the 

phase angle for the algebraic expression of the square 
root. Two expressions which are directly usable 
for programming are presented. One of them is 
equivalent to the traditional one given by Zachariasen 
[ Theory of  X-ray Diffraction in Crystals (1945). New 
York: Wiley]. The other can be used without any 
problems of infinite values whatever values the 
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Fourier coefficients of the polarizability takes. Some 
numerical examples of rocking curves are demon- 
strated for very special values of the Fourier 
coefficients. 

1. Introduction 

Bragg reflection in Bragg geometry is an old topic of 
dynamical diffraction and has been studied by many 
authors [Darwin, 1914; Ewald, 1917; Prins, 1930; 
Hirsch & Ramachandran, 1950; Cole & Stemple, 
1962; Fingerland, 1971; Kato, Katagawa & Saka, 1971 
(KKS)]. Also, other important literature and related 
subjects are described in many text books and review 
articles. In particular, the theoretical details are dis- 
cussed by Zachariasen (1945) (ZT), James (1963), 
Batterman & Cole (1964) and Kato (1974) (KT). 

The aim of this paper is principally to propose a 
simple method to calculate rocking curves numeri- 
cally by dealing directly with complex functions. The 
method can be applied to most general cases: for 
non-centrosymmetric crystals and for a wide range 
of crystal parameters• Some numerical examples are 
presented for a set of parameters which are not usually 
dealt with. Some comments will be given with simple 
proofs on the characteristic features of rocking curves 
(RC). 

2. A summary of basic formulae 

It is well known that the reflectivity (the power ratio 
of the Bragg reflected beam and the incident beam) 
is given as a function of the glancing angle 0 with 
respect to the net plane in the form (e.g. KT) 

g ( o ) = l x J x _ g l l [ u - ( u = - u = ) ' / = ] / u l  ~, (1) 
where 

u=lbl(O--OB) sin2OB+½(l+ b )Xo, (2a)* 

which is identical to Zachariasen's parameter z, and 

u = Ibl '/2P(XgX_g)'/2, (2b)* 
the square of which is Zachariasen's q. Here, b is also 
Zachariasen's parameter which specifies obliqueness 
of the net plane to the entrance surface (negative for 
the Bragg case), P is the polarization factor of the 
X-rays, 03 is the value of 0 vthich satisfies the exact 
Bragg condition and Xo and Xg are Fourier coefficients 
of 4~ times the complex polarizability of the crystal, 
X-'Xrq-ix i. 

Equation (1) can be derived by the standard 
dynamical theory either assuming a half-infinite crys- 
tal from the start (as in KT) or assuming first a 

* Slight modifications are made to the previous formulae (KT) 
in order to fit in with Zachariasen's notation. For example, 
K (=2~r/a) is dropped in (2a), (2b). However, the physical mean- 
ing is not changed• 

parallel-sided crystal with a finite absorption (as in 
ZT). In the second method, (1) is obtained as an 
asymptotic form for an infinitely thick crystal. A single 
discrepancy between the two approaches appears in 
the case of absolutely non-absorbing crystals. The 
physical reason is fully discussed in KKS and KT. 
Often, (1) is called Darwin's curve and that derived 
by the second approach is called Ewald's curve (ZT). 
In practice, however, we need not bother with the 
discrepancy and it is safe to use (1). Ewald's curve 
is valid only when the crystal thickness is extremely 
thin, the crystal surfaces are very flat and parallel and 
the plane-wave front is sufficiently wide that all multi- 
ply reflected waves on the entrance and exit surfaces 
contribute coherently to the final result. 

Since the Fourier coefficients of X are crucially 
important in the following arguments, some relevant 
formulae are summarized. 

• i Xo=X;+IXo (3) 

X~=lx~lexp iqh, x~=lx~lexp i~p2 (4a, b) 

Ixgl= = x~12+lx~12+2x~lx'~lsin(~,-,p2) (5a) 

X-~ 2= X~ 2+ Xg2-2X~ X~ sin (~o,-~02) (5b) 

• r i xgx-~ = x~2-1x~2+2, x~ x~ cos(~,-,p2). (5c) 
According to the theorem of Fourier integrals, the 
following relations hold in general: 

X~ -> Xg[, X~ - Xgl• (6a, b) 

In centrosymmetric (non-polar) crystals, one can 
make ~o, and ~o2 zero, so that 

Ixgl-- Ix- l. (7) 
Zachariasen dealt with this case under an additional 
limitation that the absolute value of 

i r K = Xg/X~ (8) 

(real in non-polar crystals) is much smaller than 
unity• The parameter K indicates the magnitude of 
Borrmann absorption• 

Following Zachariasen's theory, Hirsch & Rama- 
chandran (1950) extended the theory to large IKI. 
Cole & Stemple (1962) and Fingerland (1971) exten- 
ded the theory to polar crystals, introducing the par- 
ameter of polarity 

S=IK I sin (~1-- ~2) (9) 

in the present notation. All authors, following 
Zachariasen, use two further important parameters: 

Y~= {Ib[(0 - 0B) sin 20~ +½(1 + [bl)x~}/ib['/2Plx~[ 
(10) 

g=½(1 + bl)x~,/Ibl'/2P x~[, (11) 

which specify the deviation from the Bragg condition 
and the magnitude of normal absorption, respectively. 
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For the general case, KKS and Fingerland dis- 
cussed the functional structure of (1). The details are 
also described by KT and can be summarized as 
follows. 

(a) The physically allowable condition is rep- 
resented by 

IIm [U]I-< Im [u]. (12a) 

(b) Under the above condition, 

R(0)-< 1 (12b) 

always, as it should be. 
(c) The maximum of R(O) occurs only once at 

R e [ a ] = ~ = R e [ U ] I m [ U ] / I m [ u ] .  (12c) 

(d) As a corollary of (c), from the condition (12a), 

i~l_< IRe [U]I. (12d) 

(e) To meet the physical condition, the expression 
__( / , /2  U2)1/2 must belong to the negative Riemann 
surface of Z in the algebraic equation, Z 2 = (u 2 -  U2). 

3. Suggestions for the numerical calculation of RCs 

Although the original expression (1) is very simple, 
if one wishes to represent it in terms of real variables, 
the expression becomes very complex, particularly 
for polar crystals. Such a task had to be carried out 
for the numerical calculation of RCs and for some 
theoretical treatments. Nowadays, however, it is 
popular to carry out numerical calculation in terms 
of complex variables even on personal computers. 
For this reason, it is much simpler to calculate R(O) 
directly from (1) as it is. 

Care is required only for calculating - ( u  2 -  U2) ~/2. 
In order to fit the statement (e) above, it is suggested 
that the relation 

(u2-U2)l /2=(u4-U)l /2(u-U) '/2 (13) 

is used with the usual convention that the angular 
phase of (~.)~/2 lies between +(7r/2) for any complex 
number ~'. Because of (12a), Im [u+  U]->0. There- 
fore, the angular phase of (u 2 -  U2) 1/2 always lies 
between 7r and 0 in our problem; i.e. - ( u  2 -  U2) 1/2 
belongs to the negative Riemann surface. 

Often, for reducing the number of parameters 
involved, R(O) is expressed in terms of normalized 
parameters. This gives rise to another complication 
or confusion, as pointed out by Fingerland. As seen 
in the definitions listed in (8) to (11), the traditional 
parameters have been normalized essentially with Xg 
for the divisor. In general, this must be a real positive 
quantity. Also, it is desirable for the divisor to be 

r i defined easily from the Fourier coefficients, Xg,Xg 
and (~0~ - ~02). Certainly, the traditional normalization 
meets these requirements but, as a result, the 
expressions for R(O) so far obtained were rather 

complicated. Moreover, if ]Xg] is close to zero, one 
may encounter the problem of infinity. 

In order to find a suitable normalization, we shall 
consider the following quantities: 

A =  abs [X~X-~] >- 0, • = arg [X~X-g], (14a, b) 

where abs [ . . .  ] and arg [ . . .  ] are operators (or com- 
puter commands) to obtain, respectively, the absolute 
value and the phase angle between + 7r of any complex 
number. A and • are calculable easily from (5c) 
provided that the fight-hand side is given. Then, we 
have 

(XgX_g)U2=AU2exp(iO/2).  (15) 

Now, we introduce the following parameters: 

N = Re [(X~X_~) 1/2] = A ~/2 cos ( ~ / 2 )  ->0 (16a) 

k = Im [ (X~X_g)l/2]/Re [ (XgX_~) */2] = tan (~ /2 ) .  

(16b) 

Recalling the remark concerning (13), one can write 
RCs in the form suitable for computer programming: 

R( O) = Ix, lx-~l(1 + k2) - '  

x I(x + i a ) - [ ( x  + ia) + (1 + ik)] 1/2 

x[ (x  + ia) - (1 + ik)]l/2l~, (17) 

where 

(x + ia) = u/Ibl'/2PN. (18) 

In summary, (17) can be used under the physical 
condition (12a). The normalized parameters are x, a 
(equation 18) and k (equation 16b). The first two 
differ from Zachariasen's y r and g only in the divisor 
so their physical implications are identical. The 
parameter k is a generalization of K (equation 8), 
including the effect of polarity. All three parameters 
can be determined uniquely from the Fourier 
coefficients. 

Equation (17), however, is not very satisfactory for 
numerical calculation. Similar to traditional nor- 
malization, it gives rise to infinite values when 
tends to +Tr, i.e. N is close to zero. Nevertheless, (17) 
is useful for theoretical arguments. A few examples 
are given below. 

When k = +a  and if x = +1, respectively, one of 
the factors [ . . .  ]1/2 will be zero. Then, 

R(0) = Ixjx-~l(1 + k2)-'11+ ik[ 2= IxJx- l. (19) 

One remark is worth making. Equation (19) 
appears contradictory to (12b) when Ix /x- l is larger 
than unity in polar crystals. However, this is not so. 
Equation (19) was derived under the constraint Ikl = 
a, which holds only when the crystal is non-polar 
(s = 0) and other diffraction conditions are satisfied 
(see Appendix). In fact, a is the maximum value of 
Ikl. Otherwise, the physically allowable condition 
(PAC), i.e. (12a), will be violated. Henceforth, when 
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the equality holds the case will be called the extreme 
PAC. 

Next, we shall compare the cases of +q~ and - q )  
in (17). In the latter case, taking the complex conju- 
gate and replacing x by - x  inside 1. . .  1, we shall have 
the same expression as in the former case multiplied 
by - inside the 1. . .  1, which gives the same R(O). 
Therefore, in any case, RCs for + q~ are mirror sym- 
metric with respect to x = 0. 

Returning to the problem of numerical calculation, 
in order to avoid the difficulty of infinite values for 
normalized parameters, we may use a divisor 

N ' =  A 1/2 (20) 

instead of N. Then, RCs have the form 

R ( 0 ) =  xdx-=ll(x'+ ia') 

- [ (x '+  ia') + exp ( i~/2)]  ~/2 

x [ (x '+  i a ' ) - e x p  (i~/2)]~/212, (21) 

where 

x '+ ia'= u~ b I/2pN'. (22) 

This method is better than the previous one because 
N '  does not become zero. If it does, no reflection 
occurs. As mentioned before, the divisor N '  and the 
phase q~ are obtainable directly from (5c) if XgX-g is 
gwen. 

One can develop similar arguments described in 
connection with (17). Corresponding to the extreme 
PAC (a = Ikl) in the previous case, the equivalent 
condition is a ' =  Isin qV21. If a '  is less than unity, it 
should be noted that the limit of 1 /21 is fixed by 
sin -1 (a').  

The traditional approach is also simplified along 
the line of similar considerations. Then, He RC can 
be written in the form 

R(0)=  Xg/X_glB -2 

xl(y" + i g ) - [ ( y"  + ig)+ B exp (iF/2)] '/2 

x [ ( y ' + i g ) - B e x p ( i F / 2 ) ]  ~/22 (23) 

with the auxiliary relations 

B = abs [Q], F =  arg [Q], (24a, b) 

and 

Q=(1-l.l=)+2i(lKl=-s=)'/% (24c) 
where the alternative sign is selected in accordance 
with the sign of cos (qh - q~2). 

All parameters are the same as those of Zachariasen 
defined above and s is defined by (9). If handling 
complex functions is allowed, the numerical calcula- 
tion of R(O) is straightforward. In this case, the 
extreme PAC is 

g = B l s i n ( F / 2 ) .  (25) 

When [g/B < 1, a similar limitation to qb has to be 
posed on F. 

4. Numerical examples 

In all the drawings, the ordinate represents R(O) of 
(1), but the factor Ixg/x-v,I is deliberately omitted. 
This does not mean the exclusion of polar crystals. 
However, it is worth noting that the curves having a 
singular peak refer to non-polar crystals with the 
conditions Ibl = 1, P = 1 and IX~l = G I .  The abscissa 
scale depends upon which method is employed. 

Fig. l ( a )  illustrates a set of examples calculated 
by (23). The unit of the abscissa scale is the traditional 
one, namely b 1/2p Xrg[. Here, we take up the case 
that Xg = Xg sothat  K[= 1 and F =  +¢r/2 depending 
upon the sign of cos (~01-~o2). As proved above, 
however, the opposite sign gives the mirror image. 
The crystal is assumed to be non-polar with F = -7 r / 2  
in the illustration. When g = - K  = 1, the RC is sin- 
gular and is unity at y r = _ l .  For increasing g, the 
peak value decreases and shifts towards y ' =  0. All 
features are similar to those reported by Hirsch & 
Ramachandran (1950) who, however, show results 
only for 1~1<-o.2. 

1.0 - R(O) 

0 . 8 -  

0 . 6 -  

0 .4 -  

0.2 

! I 
- 6  - 4  - 2  
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~ ~ , ~ i , ~  

(a) 
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K 
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Fig. 1. (a) The rocking curves for r = - 1 ,  Le. Gl=lx'~l, calculated 
by the traditional method using (23). g values of (i) 1.0, 
(ii) 1.2, (iii) 1.4, (iv) 1.6, (v) 2.0, (vi) 3.0. Broken line: non- 
absorbing case (g = 0 and K = 0). (b) The rocking curves for the 
same parameters as (a),  calculated by the second method using 
(21). The ratio of the scale units of  x' and y" is 21/2 and 
a'/g = 1/21/2. 
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Fig. l (b)  shows the results calculated by (21). To 
compare .the two methods, the same values of the 
relevant Fourier coefficients are employed. Therefore, 
the ratio of the scale units o fx '  and yr is N ' / X ~  = 21/2 
and a ' / g =  1/21/2 in the present case. Taking into 
account these ratios, we see that the results of Figs. 
1 (a) and (b) are identical. 

Next, we take up another special case, X~I = 0, to 
which the traditional approach using (23) is not appli- 
cable. Fig. 2 shows the results calculated by (21). In 
this case, N '  = X~ and q) = +zr. When a '  = 1, the peak 
is extremely sharp and symmetric, the height being 
unity. These properties are ideal for making optical 
devices with crystals. To obtain such a peculiar curve 
in practice, the condition Xg[ = 0 is not necessarily 
very exact, but the condition a ' =  1 is very stringent 
as anticipated in the illustration. Numerically, if a ' =  
1.01, the peak height goes down to 0.75. For this 
reason, the case is merely of theoretical interest. A 
more important feature is that one can expect a weak 
reflection for a finite [X~ even when Xg] = 0. In gen- 
eral, we have to take into account Ix~l properly for 
weak reflections, i.e. X~ = O. 

5. Concluding remarks 

The mathematical structure of the RC [(1)] has been 
well investigated as summarized in § 2. With the 
recent progress of computer calculations, the present 
author suggests that the basic equation should be 
manipulated as a complex function. The second 
method [(21)] can be applied to all conceivable cases. 
A computer program can be written on the basis of 
an unconditional equation. No problem occurs 
through numerical divergence. Here, as a demonstra- 
tion, we have taken two special cases, i.e. Xg] = [Xg 
and Xg[ = 0  but [X~ finite. Because the tuning of X-ray 
wavelength has become feasible with synchrotron 
radiation, such special cases occur in practical experi- 
ments. 

I .O R iO )  , . . . . . . .  

0.8 ] 

I 
0.6 I 

I ! , . . ~ l / ( h )  

0.2 I (d) 

•. -.._~.~J" ~ _ ,  x' | ! | 
I I I I I I I 

-6 -4 - 0 ~ 4 6 [4 

Fig. 2. The rocking curves for JXgl=0 calculated by (21). The 
a' values are (a) 1.0, (b) 1.1, (c) 1.2, (d) 1.4• • = -¢r/2 for all 
curves. 

The program used by the present author consists 
of only three command lines, corresponding to the 
functional definition of R(0) ,  the numerical calcula- 
tion and the figure plotting, respectively. The time 
required to draw one curve in the above illustrations 
was of the order of 10 s with a commercial personal 
computer. 

Finally, (17), (21) and (23) are also useful for 
understanding general features of RCs in a simple 
manner. 

A P P E N D I X  

The condition a = k can be written explicitly in the 
form 

(1 /2P)[  b 1 / 2 +  1/ib 1/2]X~o=im[(xgx_g)l/2].  (A1) 

However, we can prove that 

(1 /2P) [  b 1/2+ 1/b11/2] >- 1 (AEa) 

X~-  > X~I >-Im [(XgX_g) 1/2] (AEb) 

so that (A1) is satisfied only when (i) P = 1, (ii) b = 1, 
(iii) X~ = Xg and (iv) XgJ = Im [(XgX_g)l/2]. 

The last inequality of (A2b) is proved as follows. 
For any complex number XgX-g = a + ifl (a  and fl 
real), 

B =  i m  [(a + ifl) 1/2] 

=(1/21/2){(Ot2+f12)l/2--Ol} 1/2. (A3) 

With the use of the explicit expressions for a and/3  
given in (5e), 

( 2 .at_ j~2) = ix~[4 + Xg[4 + 2 X~l 2 Xg 2 COS 2(~0i- ~02). 

( a4 )  

Therefore, m a x . [ ( a 2 + f l 2 )  1/2] is given by Xg 2+JXg 2 
under the condition (v) (~01-~02)=0 or or. Con- 
sequently, max. [B 2] is given by X~ 2 SO that the 
inequality is proved. Also, the necessary condition 
(iv) can be replaced by (v). 

After all, the initial constraint k = a implies that 
the polarity parameter s [(9)] is zero. Simultaneously, 
conditions (i), (ii) and (iii) must also be satisfied. 
Consequently, it turns out that the value of [k does 
not exceed a. A similar argument can be applied also 
to the other forms of the extreme PAC. 
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Abstract 

Rocking curves (RC) of Darwin-Prins type of distor- 
ted crystals have been systematically studied with 
respect to various parameters which characterize the 
crystal and its deformation. The basic formula is given 
in an earlier paper [Kato (1990). Acta Cryst. A46, 
672-681]. Through numerical analysis, characteristic 
features of RCs were deduced. In order to understand 
them, a simplified theory was developed based on a 
WKB approximation. Most of the features, in par- 
ticular the oscillatory behaviour of RCs, could be 
interpreted by the geometrical configuration of the 
entrance surface and the bending C band, which was 
defined as a region where the local wave number is 
practically pure imaginary. The concept of the C band 
is analogous to the forbidden energy band of electrons 
popular in solid-state physics. 

1. Introduction 

Rocking curves (RC) in Bragg geometry are sensitive 
to lattice distortion near the crystal surface. Taupin 
(1964) proposed a fundamental (differential) equa- 
tion to calculate the intensity of the Bragg reflec- 
tion for distorted crystals. Since then, the theory 
has been widely used in many investigations. For 
example, Burgeat & Taupin (1968) and Fukuhara & 
Takano (1977) studied experimental RCs of impurity- 
doped crystals and showed a reasonable agreement 
with the theoretical curve based on the erfc-function 
model for the lattice distortion. More recently, 
Bensoussan, Malgrange & Sauvage-Simkin (1987) 
presented a similar work for a III-IV* heterojunction 
system. Many relevant articles are cited in that paper. 
They also obtained a good agreement between 
Taupin's theory and their experimental results. It 
seems, therefore, that there remains no serious prob- 

* Groups 13-14 in IUPAC (1988) nomenclature. 
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lem in this research field from the practical point of 
view. 

All authors, however, solve Taupin's differential 
equation numerically assuming some plausible model 
for the lattice distortion depending on their own 
samples. For this reason, it seems desirable to make 
a systematic analysis of RCs based on an exact and 
analytical solution of the wave field, which has been 
obtained recently by the present author (Kato, 1990). 
This is the primary subject of the present paper. 

Here, the lattice spacing is assumed to have the 
form Do tanh (ax), where x is the coordinate normal 
to the net plane concerned. The model is similar to 
that of Bensoussan et al. (1987). By changing Do, a 
and the position of the entrance surface xe, one can 
represent various monotonic forms of the lattice 
expansion effective for diffraction. These forms give 
rise to different shapes of RC. There are parameters 
of another type characterizing the crystal concerned, 
which also change the shape of the RC. They are the 
structure factor and the normal and Borrmann 
absorption. With this complex situation in mind, 
results will be presented in terms of suitably normal- 
ized parameters (§ 3). 

One interesting phenomenon is the oscillatory 
behaviour of a RC which appears under specific con- 
ditions. The phenomenon itself was recognized in 
both numerical simulations and real experiments by 
the authors mentioned above. Here, characteristic 
properties are interpreted by a simple theory to eluci- 
date the physical significance (§ 4). 

2. Glossary of formulae and parameters 

( a ) Perfect crystals 

In order to give an idea of the present scheme of 
notation, RCs of perfect crystals are first dealt with. 
We are concerned only with the symmetrical case. 
The theoretical details are described in standard texts 
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